## THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I (Fall 2016) Suggested Solutions to Homework 5

Let  $A \subseteq \mathbb{R}$  be nonempty,  $f : A \to \mathbb{R}$ , and  $c \in \mathbb{R}$  be a cluster point of A.

1. Suppose  $f(x_n)$  converges in  $\mathbb{R}$  whenever  $(x_n)$  is a sequence in  $A \setminus \{c\}$  converging to c. Show that there exists  $l \in \mathbb{R}$  such that  $f(x_n)$  converges to l whenever  $(x_n)$  is a sequence in  $A \setminus \{c\}$  converging to c. Hence, by virtue of definition of limits for functions, show that  $\lim_{x\to c} f(x) = l$ .

*Proof.* • We first prove that for any sequences  $(x_n)$ ,  $(y_n)$  with  $(x_n)$ ,  $(y_n) \subseteq A \setminus \{c\}$ ,  $(x_n) \to c, (y_n) \to c$ , we have

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$$

Indeed, let  $(x_n)$ ,  $(y_n)$  as above. By assumption,  $f(x_n) \to l$ ,  $f(y_n) \to l'$  for some  $l, l' \in \mathbb{R}$ . We would like to show that l = l'. To this end, we construct a new sequence  $(z_n)$  as:

$$(z_n) := (x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots)$$

Then we have  $(z_n) \subseteq A \setminus \{c\}$ , and that  $(z_n) \to c$ . By assumption again, we have  $f(z_n) \to l''$  for some  $l'' \in \mathbb{R}$ . But by construction,  $(x_n)$  is a subsequence of  $(z_n)$ , whence  $f(x_n)$  is a subsequence of  $f(z_n)$ . Since  $f(z_n) \to l''$ , we must have  $f(x_n) \to l''$ . Hence l = l''. Similarly, l' = l''. This gives l = l'.

- We pick a fixed sequence  $(a_n) \subseteq A \setminus \{c\}$  converging to c. The existence of such sequence is guaranteed by the assumption that c is a cluster point of A. Then there exists  $l \in \mathbb{R}$  with  $\lim_{n\to\infty} f(a_n) = l$ . By the above claim,  $\lim_{n\to\infty} f(x_n) = l$  for any  $(x_n) \subseteq A \setminus \{c\}$  converging to c.
- Lastly we show that  $\lim_{x\to c} f(x) = l$ .

Suppose not. Then there exists  $\epsilon_0 > 0$  such that for any  $\delta > 0$ , there exists  $x \in A$  with  $0 < |x - c| < \delta$  such that  $|f(x) - l| \ge \epsilon_0$ . In particular, for each  $n \in \mathbb{N}$ , we take  $\delta_n := \frac{1}{n} > 0$  (or  $\frac{689}{n^{1997}}, \frac{1}{2047^n}$  if you like, as long as it converges to 0 and strictly positive), and  $x_n \in A$  be such that  $0 < |x_n - c| < \delta_n$  and  $|f(x_n) - l| \ge \epsilon_0$ . Since  $\delta_n \to 0$ , by squeeze law, we have  $x_n \to c$ . In this way we obtain a sequence  $(x_n) \subseteq A \setminus \{c\}$  with  $x_n \to c$ . By what we have proved just now,  $\lim_{n\to\infty} f(x_n) = l$ . Hence for  $\epsilon := \epsilon_0 > 0$ , there exists  $N \in \mathbb{N}$  such that for all  $n \ge N$ ,  $|f(x_n) - l| < \epsilon_0$ . This is a contradiction to our choice of  $x_n$ . Therefore the contrapositive is true, i.e.  $\lim_{x\to c} f(x) = l$ .

2. Suppose that for any  $\epsilon > 0$  there exists  $\delta > 0$  such that whenever  $x, x' \in A \setminus \{c\}$  with  $|x - c| < \delta$ ,  $|x' - c| < \delta$ , we have

$$|f(x) - f(x')| < \epsilon.$$

Show that  $\lim_{x\to c} f(x)$  exists.

*Proof.* We will use the criterion in Question 1, i.e. we want to show that  $f(x_n)$  converges in  $\mathbb{R}$  whenever  $(x_n)$  is a sequence in  $A \setminus \{c\}$  converging to c.

Let  $(x_n)$  be a sequence in  $A \setminus \{c\}$  converging to c. Let  $\epsilon > 0$ . By assumption, there exists  $\delta > 0$  such that whenever  $x, x' \in A \setminus \{c\}$  with  $|x - c| < \delta$ ,  $|x' - c| < \delta$ , we have

$$|f(x) - f(x')| < \epsilon. \tag{(*)}$$

Since  $(x_n) \to c$ , there exists  $N \in \mathbb{N}$  such that for  $n \geq N$ ,  $|x_n - c| < \delta$ , and that  $x_n \neq c$ . Then if  $n, m \geq N$ , we have  $0 < |x_n - c| < \delta$ ,  $0 < |x_m - c| < \delta$ . By (\*),  $|f(x_n) - f(x_m)| < \epsilon$ . This shows that  $f(x_n)$  is a Cauchy sequence. By Cauchy criterion of sequences,  $f(x_n)$  converges in  $\mathbb{R}$ . By Question 1, there exists  $l \in \mathbb{R}$  such that  $\lim_{x\to c} f(x) = l$ .

3. Let  $(x_n)$  be a sequence of real numbers. Define

$$s_n := x_1 + x_2 + \dots + x_n$$
  
 $s'_n := |x_1| + |x_2| + \dots + |x_n|$ 

Show that if  $(s'_n)$  converges to a real number, then so is  $(s_n)$ .

*Proof.* We will show that  $(s_n)$  is a Cauchy sequence in  $\mathbb{R}$ . Let  $\epsilon > 0$ . Since  $(s'_n)$  is convergent,  $(s'_n)$  is Cauchy. Then there exists  $N \in \mathbb{N}$  such that for  $n > m \ge N$ , we have  $|s'_n - s'_m| < \epsilon$ . Thus

$$||x_{m+1}| + |x_{m+2}| + \dots + |x_n|| < \epsilon$$

By triangle inequality, we have:

$$|s_n - s_m| = |x_{m+1} + x_{m+2} + \dots + x_n| \le |x_{m+1}| + |x_{m+2}| + \dots + |x_n| < \epsilon$$

This shows that  $(s_n)$  is Cauchy in  $\mathbb{R}$ . By Cauchy criterion,  $(s_n)$  is convergent in  $\mathbb{R}$ .

- 4. Let  $(x_n)$  be a sequence which is not Cauchy. Show that there is an  $\epsilon > 0$  such that:
  - (a) For any  $N \in \mathbb{N}$  there exists  $N' \in \mathbb{N}$  with N' > N such that  $|x_N x_{N'}| \ge \epsilon$ .
  - (b) There is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $|x_{n_k} x_{n_{k+1}}| \ge \epsilon$  for all  $k \in \mathbb{N}$ .
  - *Proof.* (a) We will prove by contradiction. Suppose for any  $\epsilon > 0$ , there is  $N \in \mathbb{N}$  such that for any  $n \in \mathbb{N}$  with n > N, we have  $|x_N x_n| < \epsilon$ . Taking m, n > N, we have

$$|x_m - x_n| \le |x_m - x_N| + |x_n - x_N| < 2\epsilon$$

This shows that  $(x_n)$  is Cauchy, which is a contradiction. Therefore there is an  $\epsilon > 0$  such that for any  $N \in \mathbb{N}$  there exists  $N' \in \mathbb{N}$  with N' > N such that  $|x_N - x_{N'}| \ge \epsilon$ .

(b) We will construct  $(x_{n_k})$  inductively: Let  $\epsilon > 0$  be as in (a). Let N = 1. Then there exists  $N_1 \in \mathbb{N}$  with  $N_1 > 1$  such that

$$|x_1 - x_{N_1}| \ge \epsilon.$$

Let  $N = N_1 \in \mathbb{N}$ . Then there exists  $N_2 \in \mathbb{N}$  with  $N_2 > N_1$  such that

$$|x_{N_2} - x_{N_1}| \ge \epsilon.$$

Let  $N = N_2 \in \mathbb{N}$ . Then there exists  $N_3 \in \mathbb{N}$  with  $N_3 > N_2$  such that

$$|x_{N_3} - x_{N_2}| \ge \epsilon.$$

Inductively, we obtain in this fashion a subsequence  $(x_{n_k})$  such that

$$|x_{N_{k+1}} - x_{N_k}| \ge \epsilon,$$

for any  $k \in \mathbb{N}$ . Therefore the sequence  $(x_{N_k})$  is what we want (After changing the notations)